151 research outputs found

    Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD): applications to the design of 3D-printed architectured materials

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-017-1534-9Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.Peer ReviewedPostprint (author's final draft

    Non-prismatic Timoshenko-like beam model

    Get PDF
    The present paper combines an effective beam theory with a simple and accurate numerical technique opening the door to the prediction of the structural behavior of planar beams characterized by a continuous variation of the cross-section geometry, that in general deeply influences the stress distribution and, therefore, leads to non-trivial constitutive relations. Accounting for these peculiar aspects, the beam theory is described by a mixed formulation of the problem represented by six linear Ordinary Differential Equations (ODEs) with non-constant coefficients depending on both the cross-section displacements and the internal forces. Due to the ODEs complexity, the solution can be typically computed only numerically also for relatively simple geometries, loads, and boundary conditions; however, the use of classical numerical tools for this problem, like a (six-field) mixed finite element approach, might entail several issues (e.g., shear locking, ill-conditioned matrices, etc.). Conversely, the recently proposed isogeometric collocation method, consisting of the direct discretization of the ODEs in strong form and using the higher-continuity properties typical of spline shape functions, allows an equal order approximation of all unknown fields, without affecting the stability of the solution. This makes such an approach simple, robust, efficient, and particularly suitable for solving the system of ODEs governing the non-prismatic beam problem. Several numerical experiments confirm that the proposed mixed isogeometric collocation method is actually cost-effective and able to attain high accuracy

    Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD)

    Get PDF
    Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen

    Natural stone masonry characterization for the shaking-table test of a scaled building specimen

    Get PDF
    This paper discusses the material characterization tests on stone masonry specimens, and the in-plane cyclic shear-compression tests on four half-scale unreinforced stone masonry piers, which complement a shaking-table test on a half-scale building aggregate prototype. Material characterization tests allowed defining a mortar composition suitable for satisfying the similitude relationships associated with the half-scale tests. Vertical and diagonal compression tests provided a complete description of the mechanical properties of masonry assemblies, while in-plane cyclic shear-compression tests allow determining the hysteretic behavior of masonry piers with different aspect ratios and axial compression levels. Strength and displacement capacities corresponding to the observed damage mechanisms and failure modes were also identified and associated with the specimens geometric and loading conditions. These activities are part of an experimental and numerical research project jointly carried by the University of Pavia, Italy, and the École Polytechnique Fédérale de Lausanne, Switzerland, which aims at assessing the seismic vulnerability of natural stone masonry building aggregates of the historical center of Basel, Switzerland

    Computational methods in cardiovascular mechanics

    Full text link
    The introduction of computational models in cardiovascular sciences has been progressively bringing new and unique tools for the investigation of the physiopathology. Together with the dramatic improvement of imaging and measuring devices on one side, and of computational architectures on the other one, mathematical and numerical models have provided a new, clearly noninvasive, approach for understanding not only basic mechanisms but also patient-specific conditions, and for supporting the design and the development of new therapeutic options. The terminology in silico is, nowadays, commonly accepted for indicating this new source of knowledge added to traditional in vitro and in vivo investigations. The advantages of in silico methodologies are basically the low cost in terms of infrastructures and facilities, the reduced invasiveness and, in general, the intrinsic predictive capabilities based on the use of mathematical models. The disadvantages are generally identified in the distance between the real cases and their virtual counterpart required by the conceptual modeling that can be detrimental for the reliability of numerical simulations.Comment: 54 pages, Book Chapte

    Effects of balloon angioplasty and stent implantation on intrarenal echo-Doppler velocimetric indices

    Get PDF
    Effects of balloon angioplasty and stent implantation on intrarenal echo-Doppler velocimetric indices. This study was aimed at examining whether four intrarenal echo-Doppler velocimetric indices (pulsatility and resistive indices, acceleration and acceleration time) can be useful for assessing the effects of renal artery dilation obtained with either angioplasty or stent implantation. Echo-Doppler studies were performed in 63 hypertensive patients with 68 renal artery stenoses (39 atherosclerotic and 29 fibromuscular) prior to and within five days after the dilation procedures (55 angioplasties, 13 stent implantations), which resulted in an average reduction of arterial narrowing from 79% to 20%. In 24 patients, the velocimetric indices were also examined in relationship to the venoarterial differences of plasma renin activity and of angiotensin II across the stenotic kidneys. We found that after dilation the values of the four indices had returned within the normal range in all but three arteries (one false negative for resistive index and two for acceleration time). However, decrements in acceleration time was the only factor to be significantly correlated with the reduction of arterial narrowing. Moreover, post-dilation values of this index were, on average, slightly but significantly higher in arteries that at follow-up developed restenosis rather than in those that remained patent. For similar reductions in arterial narrowing the absolute changes of all indices were similar in atherosclerotic and fibromuscular stenotic arteries and, in a subset of the atheromatous arteries, were also similar after angioplasty and stent implantation. No relationship was found with the changes in the venoarterial differences of plasma renin activity and angiotensin II. It appears that these intrarenal velocimetric indices and, in particular, acceleration time reliably reflect the technical success of renal artery dilation. The acceleration time index may also be valuable for predicting the restenosis of the dilated vessel. None of the indices, however, mirrors the functional consequences of removal of renal artery stenosis as expressed through the changes in transrenal gradients of the components of the renin-angiotensin system

    Efficacy of milbemycin oxime/afoxolaner chewable tablets (NEXGARD SPECTRA®) against Capillaria aerophila and Capillaria boehmi in naturally infected dogs

    Get PDF
    BACKGROUND: Capillaria aerophila and Capillaria boehmi parasitize the respiratory system of wild and domestic carnivores. Capillaria aerophila inhabits the trachea and bronchi of dogs and cats, while C. boehmi affects the nasal cavities and sinuses of dogs. In dogs the infection may be subclinical or characterized by varying respiratory distress.METHODS: The present study evaluated the efficacyof an oral formulation containing milbemycin oxime and afoxolaner (NEXGARD SPECTRA) in dogs naturally infected with C. aerophila and/or C. boehmi from three enzootic areas of Italy. Dogs were enrolled pending fecal examination and molecular confirmation of respiratory capillarioses. Dogs were allocated in two groups: Group 1 (G1, 25 dogs), treated with a negative control product with no anthelmintic activity (afoxolaner, NEXGARD), and Group 2 (G2, 26 dogs), treated with NEXGARD SPECTRA. At the day of treatment administration (Day 0), all dogs were clinically examined. Dogs were again subjected to clinical and fecal examinations at Days 28 (±4) and 56 (±2). The primary criterion for treatment efficacy was the reduction of fecal Capillaria egg counts in G2 compared with G1. The regression of/recovery from baseline clinical signs was considered as a further efficacy criterion.RESULTS: Percentage reduction of fecal Capillaria egg counts in the NEXGARD SPECTRA group compared to the control group was >97% on Day 28 and 100% on Day 56, respectively (p<0.05 for both time points). Twelve of the 13 dogs in the NEXGARD SPECTRA group with respiratory signs prior to treatment were free of clinical signs at the end of the study. Conversely, the six control group dogs with respiratory signs prior to treatment remained symptomatic.CONCLUSIONS: Results of the present study showed that NEXGARD SPECTRA was safe and highly efficacious in the reduction of C. aerophila and C. boehmi eggs after one treatment with a complete reduction of the egg output after the second administration associated with a recovery from respiratory signs

    Chapter Digi Skills Bsc – Revising Graphic Literacy in Bsc Architectural Design Education through a Software-Based Pedagogic Approach. A Shared Pilot Experience at the Politecnico di Milano

    Get PDF
    The 43rd UID conference, held in Genova, takes up the theme of ‘Dialogues’ as practice and debate on many fundamental topics in our social life, especially in these complex and not yet resolved times. The city of Genova offers the opportunity to ponder on the value of comparison and on the possibilities for the community, naturally focused on the aspects that concern us, as professors, researchers, disseminators of knowledge, or on all the possibile meanings of the discipline of representation and its dialogue with ‘others’, which we have broadly catalogued in three macro areas: History, Semiotics, Science / Technology. Therefore, “dialogue” as a profitable exchange based on a common language, without which it is impossible to comprehend and understand one another; and the graphic sign that connotes the conference is the precise transcription of this concept: the title ‘translated’ into signs, derived from the visual alphabet designed for the visual identity of the UID since 2017. There are many topics which refer to three macro sessions: - Witnessing (signs and history) - Communicating (signs and semiotics) - Experimenting (signs and sciences) Thanks to the different points of view, an exceptional resource of our disciplinary area, we want to try to outline the prevailing theoretical-operational synergies, the collaborative lines of an instrumental nature, the recent updates of the repertoires of images that attest and nourish the relations among representation, history, semiotics, sciences

    Klebsiella pneumoniae carrying multiple alleles of antigen 43-encoding gene of Escherichia coli associated with biofilm formation

    Get PDF
    A clinical strain of Klebsiella pneumoniae typed as sequence type 307 carrying three different alleles of the flu gene encoding the Escherichia coli virulence factor antigen 43 associated with biofilm formation was detected and characterized. The flu alleles are located in the chromosome inside putative integrative conjugative elements. The strain displays the phenotypes associated with Ag43, i.e. bi-phasic colony morphology and enhanced biofilm production. Furthermore, the strain produces low amount of capsule known to affect Ag43 function. Analysis of 1431 worldwide deposited genomes revealed that 3.7% Klebsiella pneumoniae carry one or two flu alleles

    CoreValve vs. Sapien 3 transcatheter aortic valve replacement: a finite element analysis study

    Get PDF
    Aim: to investigate the factors implied in the development of postoperative complications in both self-expandable and balloon-expandable transcatheter heart valves by means of finite element analysis (FEA). Materials and methods: FEA was integrated into CT scans to investigate two cases of postoperative device failure for valve thrombosis after the successful implantation of a CoreValve and a Sapien 3 valve. Data were then compared with two patients who had undergone uncomplicated transcatheter heart valve replacement (TAVR) with the same types of valves. Results: Computational biomechanical modeling showed calcifications persisting after device expansion, not visible on the CT scan. These calcifications determined geometrical distortion and elliptical deformation of the valve predisposing to hemodynamic disturbances and potential thrombosis. Increased regional stress was also identified in correspondence to the areas of distortion with the associated paravalvular leak. Conclusion: the use of FEA as an adjunct to preoperative imaging might assist patient selection and procedure planning as well as help in the detection and prevention of TAVR complications
    corecore